Resit Structure of Matter 2022

Tuesday 12 July, 16.00-18.00

Write your name and student number on every sheet you hand in.

PROBLEM 0: Which resit?
You can either resit all of Structure of Matter (SoM), i.e. the full 10 ECTS course, or take only part 1, or take only part 2. You have to decide. For full SoM answer problems 1-3, and 5-7 (so not 4 and 8), for part 1 answer problems 1-4, for part 2 answer problems 5-8.
Which exam would you like to take? Write this down on your answer sheet!

A: full SoM, 10 ECTS, problems 1-3 and 5-7

B: part 1, problems 1-4

C: part 2, problem 5-8.

Note: regardless your answer 0 , you have two hours to complete this exam unless you qualify for extra time.

Extra-time students: $\mathbf{1 0}$ minutes per hour $=\mathbf{>} \mathbf{2 0} \mathbf{m i n}$ extra

Without explanation or calculation steps no points will be awarded to a sub-problem even if the answer is correct!

Consider a charmed baryon with quark content usc decaying into $p+\mathbb{K}^{\boldsymbol{-}}+\pi^{+}$.

a) Which conservation law is violated? Explain your answer. [2 pts]
b) What is the flavor change that occurs and which particles are created or annihilated? Explain your answer.
c) What is the approximate time scale of the decay? Explain your answer. 0
d) Explain why mesons are much heavier than their individual quarks
e) K^{*-} mesons are the second lightest mesons with the same quark content as K^{-}mesons. What are the 1 value and parity of K^{*-} mesons? Explain your answer
f) Proof whether K^{-}mesons are eigenstates of the charge conjugation operator? Explain your answer.

Consider a Au^{6+} ion (...s5d5$)$.
a) Sketch the radial part of this 5d wave function $\left(\mathrm{rR}_{5 d}\right)$. Indicate how you determined the shape of the wave function. [z;
b) Calculate the binding energy of hydrogen-like $\mathrm{N}^{6+}(5 \mathrm{~d})$. [2 ds$]$
c) Explain why the ionization potential of Au^{6+} is much higher, higher, equal, lower or much lower than $\mathrm{N}^{6+}(5 \mathrm{~d})$. [2 pis]
d) Determine the ground term and level of Au^{6+}. Explain all steps in your answer. 3 [40]

Use the generic sequence of nuclear shell filling: $1 \mathrm{~s}, 1 \mathrm{p}, 1 \mathrm{~d}, 2 \mathrm{~s}, 1 \mathrm{f}, 2 \mathrm{p}, 1 \mathrm{~g}, 2 \mathrm{~d}, 1 \mathrm{~h} . .$.
a) Why are all even-even nuclei 0^{+}nuclei? Motivate/explain your answer. [prs]
b) What is the nuclear spin and parity of ${ }_{51}^{123} \mathrm{Sb}$. Explain all steps in your answer. [5p.s]

pROREEMA. MHEle ave Mreme [7 points]

Only answer this problem if you're taking SoM part 1.

a) Consider the isotope ${ }_{19} \mathrm{~K}$, which has a nuclear spin of $\mathrm{I}=4$. Give reasons why this is either an even-odd or odd-odd isotope. [3 pts]
b) Determine the hyperfine levels for a ${ }_{19} \mathrm{~K}$ atom in an electronic $]=3 / 2$ level. [2 pts]
c) Sketch the behavior of the states of one of the hyperfine levels as a function of a weak magnetic field B. Indicate the relevant quantum numbers. [2 pts]
2) Draw a molecular orbital diagram for O_{2}. Your diagram includes labelled \& numbered atomic and molecular orbitals, bonding/anti-bonding character, and includes electrons in the appropriate orbitals. You do not need to draw pictures of the orbitals. [3 $0: 5$]
b)'Calculate the bond order for O_{2}. [C$]$
\&) Does the bond order change when an electron is removed from O_{2} ? If so, how? [
d) Does the bond order change when an electron is added to O_{2} ? If so, how? [l]
2) Of the following species, which (if any) are paramagnetic: $\mathrm{O}_{2}, \mathrm{O}_{2}{ }^{+}$and $\mathrm{O}_{2}{ }^{-}$? [$]$

\#) Which of the following molecules may show a pure rotational microwave spectrum and why: $\mathrm{N}_{2}, \mathrm{HBr}, \mathrm{C}_{2} \mathrm{H}_{6}, \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Br}$, and $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Br}_{2}$? [$\left.\quad \mathrm{c}\right]$
b) Which of the following molecules may show infrared absorption spectra and why: N_{2}, $\mathrm{HBr}, \mathrm{NH}_{3}, \mathrm{CH}_{2} \mathrm{O}$? [a]
C) What is the hybridization of the carbon atoms and the oxygen atom in ethanol molecules (see below)? Explain your answer. [z]
d) How many vibrational modes does the ethanol molecule have? Explain your answer. [3pts]

PROBLEM 7. Crystallathces [9 points]

a) Draw the arrangements of atoms on the (100) and (110) planes of a bcc crystal with lattice spacing a. Indicate the lengths of the sides in your drawing. [$\%$]
b) A crystal lattice has a set of primitive vectors: $\vec{a}_{1}=(a / 2) \hat{x}+(a / 2) \hat{y}$

$$
\vec{a}_{2}=a \hat{y}
$$

$$
\vec{a}_{3}=(a / \sqrt{2}) \hat{z}
$$

Calculate the primitive vectors of the reciprocal lattice and identify the type of crystal to which the reciprocal lattice belongs. [5 prs]

PROBLEM 8. Semiconductors [9 points]

Only answer this problem if you're taking SoM part 2.

A crystalline silicon wafer (band gap 1.12 eV) is n -doped by adding suitable atoms at a concentration of 5×10^{15} per cubic centimetre. Next, to make a pn-junction, part of the wafer is p -doped at a concentration of $5 \times 10^{18} \mathrm{~cm}^{-3}$. Assume that the pn-junction is kept in the dark and no voltage is applied. Assume that all doping atoms are ionized and that $k T$ $=0.025 \mathrm{eV}$. The effective density of states of the conduction band, resp. valence band, of silicon is $\mathrm{N}_{\mathrm{C}}=3.22 \times 10^{19} \mathrm{~cm}^{-3}$, respectively $\mathrm{N}_{\mathrm{v}}=1.83 \times 10^{19} \mathrm{~cm}^{-3}$.
7) Draw an energy band diagram of this pn junction and indicate the direction of electron drift and electron diffusion. [$3 \mathrm{p}: \mathrm{s}$]
b) Calculate the energy difference (in eV) between the Fermi level and the conduction band in the n-layer. [2 pts]
s) Calculate the energy difference (in eV) between the Fermi level and the valence band in the p-layer. [2 pts]
d) What is the density of minority carriers in the n-layer? [2 pts]

